AD=AOB3 170 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE F/¢ 1271
UPDATING FORMULAE AND A PAIRWISE ALGORITHM FOR COMPUTING SAMPLE~=ETC(U)
NOV 79 T F CHANs & H 60LUB» R J LEVEQUE DAAG29=78-6-0179
STAN-CS-79-773

"l" |0 I mes

= I p2
= .k

L

|||| T

I

22 it e

MICROCOPY RLSOLUION TEST CHARI

)
= -
; 4 ™o
] —
i o UPDATING FORMULAE AND A PAIRWISE ALGORITHM FOR
| ; ?w COMPUTING SAMPLE VARIANCES
i S by
- <
¥ o Tony F. Chan
3 << Gene H. Golub
] i STAN-CS-79-773
2 November 1979
:

DEPARTMENT OF COMPUTER SCIENCE
School of Humanities and Sciences
STANFORD UNIVERSITY

& « i Tocument v -
f ! LR ,".\ecn . ""v'('}d
or public relcozs g SGI-"”.i o
distribution 1s unlimiteq,

057

DD FiLe coey,

80 1 17

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dasts Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

,

STAN-CS-79~773"

1 REPORT NUMBER 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER

“‘”)

4 TITLE (and Subtitie))
Up&égzhg Pormulae and a PalrWlse Algorlthm for }
Computing Sample Varlances.f\—mmﬂw,n-«w» S s

technical, November 1979

6. TYPE OF REPORT & PERIOD COVERED

1o}

7. AUTHORIs!)

. PERFORMING ORG. REPORT NUMBER

STAN-CS-7 9-17,2]

/ Tony F. /Chmb Gene H. /Golub,.ﬂ Randall J/Le\ii -
s . —— L SRy Skt , j

s e n o o -ire e S

8 CONTRACT OR GHANY NUMBE R(s)

Vohac29-78- c—01\§‘“

]

9 PERFORMING ORGANIZATION NAME AND APDRESS
Department of Computer Science
Stanford University
Stanford, California 94305 USA

10. PROGRAM ELEMENT, PROJE

AREA & WORK UN

TN S

11. CONTROLLING OFFICE NAME AND ADDRESS
U.3. Army Research Office

P.0. Box 1lz2ll

Research Triangle Park, N.C. 27709

14 MONITORING AGENCY NAME & ADDRESS (if diff. from Controlling Office}

Unclassified

15a. DECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 'f different from report)

18 SUPPLEMENTARY NOTES

19 KEY WORDS i(Continue on reverse side it necessary and tdentify by bltock number)

20 ABSWRACT (Countinue on reverse side f necessary and identity by blocrk number!

ITM - AR AR g

\

e

A general formula is presented for computing the sample variance for a sam-
ple of size m + n given the means of variances for two subsamples of sizes
and n. This formula is used in the construction of a pairwise algorithm for
computing the variance. Other applications are discussed as well, including the
use of updating formulae in a parallel computing environment.
results and rounding error analyses for several numerical schemes.

m

We present numerica

}

DD..\-1473

UNCLASSI1FIED

EOITION OF 1 NOV 65 IS OBS/OLEYE

O‘ ¥ ‘/' .If - L.

I

SECURITY CLASSIFICATION OF THIS PAGE (When ata § ateond:

Updating Formulae and a Pairwise Algorithm for
Computing Sample Variances

Tony F. Chan®
Gene H. Golub"*
Randall J. LeVeque®*

Abstract. A general formula is presented for computing the sample viriance
for a sample of size m 4 n given the means and variances for two subsai.;.\cs of
sizes m and n. This formula is uscd in the construction of a pairwise alrorithm
for computing the variance. Other applications arc discussed as well, including
the use of updating formulae in a parallcl computing cnviornm-at. We¢ present
numerical results and rounding error analyses for scveral numcrical schicinces.

h—u*

*Department of Computer Science, Yale University, New Haven, CT 067)
**Department of Computer Scicnce, Stanford University, Stanford, CA 9:1305.

This work was supported in part by Army contract No. DAAG29-75-G-0175 wnd
by a National Science Foundation graduate fellowship. The paper was produced
using TEX, a computer typesetting system created by Donald IKnuth at Siaiford.

1. Introduction.

In computing the variance of a sample of N data points {z;}, thc f[undamental
calculation consists of computing the sum of squares of deviations from the mcan.
This quantity, which for brevity will be rcferred to as “the sum of squarcs” or
simply as “S", is defined as

N
S= E(I,‘ - 3)2, (1.1a)

where
1 N
E=}_\/—i=glzi. (llb)

This computation can be easily performed dircctly by the two-pass algorithm
(1.1) provided that (a) N is small comnparcd to the amount of corc memory avail-
able and (b) the variance is not too small rclative to the norm of the data,
llzllz = (E.N=1 z2)1/21f either of these conditions is violated, however, the situa-
tion changes. If N is large, this approach to computing S may bc unsatisfaciory
since it requires passing through the data twice: once to compute Z and then agzain
to compute S. This problem is somctimes avoided by use of the following tcxtbook
algorithm, so called because, unfortunately, it is often suggested in statistical
textbooks:

N WANRY.
S=fo—ﬁ(z:ﬁ) . (2)
i=l i=1
This rcarrangement allows S to be computed with only onc pass through the data,
but the computation may be numcrically unstable and should alinost never be
used in practice. This instability is particularly troublcsome when S is very small
comparcd to ||z||2, in which casc even the two-pass algorithin can be unstable.
In discussing the stability of a numcrical scheme for computing S, a useful
concept is that of the condition number k of the data. This quantity was first
introduced by Chan and Lewis[2) who give a thorough discussion. Briclly, & is a
measure of the sensitivity of S to changes in the data. The quantity kuis an upper
bound for the relative perturbation which would occur in the exactly computed
sum of squares il the input data contained rclative errors of size u. If the truc sum
of squares is S, then x is given by

K == ”~1~”—2 (1.3)

VS
]

It is easy to see that x > 1 and that in gencral k grows as the variance dccrcascs.
An error analysis of the textbook algorithm(2] shows that the relative error
in S can be bounded by something on thc order of

3Nk,

where u is the machine roundofl unit (sce scction 6). This algorithm is therefore
seldom useful, as confirmed by the experimental results of Table 1.

The error analysis of the two-pass algorithm found in scction 6 shows that
the relative error in the sum of squarcs computed using that algorithm can be
bounded by

Nu 4 N%22

The second term in this bound has traditionally becn ignored in crror analyscs of
the two-pass algorithm as being of sccond ordcr. But in the casc we are interested
in here, when N and & are both large, this term can casily dominate. Table 2
shows this happening in practice.

During the preparation of this manuscript, a simple modification of the two-
pass algorithm was found by Professor Ake Bjorck which reduces this bound.
Based on the error analysis of section 6 for the standard two-pass algorithm, he
suggested computingS by

N 1 N 2
S= Z(z;—-i)ﬂ - N(E(x, -—:E)) . (1.4)

=1 i==1

In exact arithmetic the seccond term is zcro, but computationally it is a good
approximation to the error in the two-pass algorithin. Note that (1.4) can also
be viewed as the textbook algorithm applied to the data {(z; — z)}. The crror
analysis of section 6 shows that the relative error in § computed by (1.4) can be
bounded by

Nu+ 4N Zeu?,

This modification adds only N additions and 2 multiplications to the cost of the
two-pass algorithm (alrcady 3N —2 additions and N -+ 1 multiplications) and can
be very useful when the data is poorly conditioned. Sce table 3 for some numerical
results.

Of course formula (1.4) is still a two-pass algorithm. For large N it may
be desirable to compute S with only onc pass through the data. A number of
papers have appcared rccently on “updating” algorithms for computiag S. These
are algorithms which are bascd on formulae for adding one new data point to a

2

sample and computing the value of S for the combined sample by updating the
(presumably known) value of S for the original sample. By starting with a samiple

of size 1 and applying this formula repcatedly, we get a one-pass algorithm for
computing S for a sample of arbitrary size. Youngs and Cramcr[G] have inves-
tigated several such algorithms and have found the following algorithin to be the
best:

This is based on the updating formula

81,5 =S1,j—1+)(Jz: Ty,;)° (1.6)

1
=
where S; ; stands for the sum of squares for the data points z; through z, and 7y,
is the sum of z; through z;. This notation will be used throughout.

One imporant characteristic of this updating formula is that S ; is forined
from Sj ;—; by adding to it a nonncgative quantitiy. In tie textbook al:orithm
(1.2), on the other hand, S is formed by a subtraction which can lcad to gross
cancellation and even to ncgative values of S being computcd.

In practice the method (1.5) generally performs on a level comparable to the
two-pass algorithm (1.1). Chan and Lewis[2] present detailed crror analy: s of
some similar updating mcthods.

In the next section we present a gencralization of the updating formuli: (1.0)
for combining two samplcs of arbitrary size. Then in scction 3 we describe a
pairwise algorithm for computing S which is essentially still a onc-pass alrorithn
but which numerically is often more stable than the standard two-pass algorithm.

2. A General Updating Formula.

The method of Youngs and Cramer depends on an updating forinuia which
allows one to compute S for j+ 1 points when given the value of S for j points and
one new point. In other words, we can combine a sample of sizc j with a sample
of size 1 and determine the value of S for the combined sample.

This formula can be easily generalized to allow us to combinc two samples of
arbitrary size. Suppose we have two samples {z,} , {z;}} " 41 and we know

3

prr—

m m+i-n
Tl,m = Z s Tm+l,m+n = Z Zs
=) t=m-1
m 1 m-+n 1
S;,m = ‘_g(ﬁ —_ ;’n‘Tl,m)za Smt1,m4n = i=§m:+l($s - mt-1,md n)

Then, if we combine all of the data into a sample of size m 4 n, it can bc shown

that
Ti,m+n=Ti,m~+ Ti,min 2.1a)
Sl,m+n = Sl,m + Sm+l,m+n
m n 2
+ m(;ﬂ.m - Tm+l.m+») : (2.18)

If we rewrite the latter formula as

2
Sl,m+n = sl,m + sm+l,m+n + n(m"_l{» n) (m:‘_ nTI,m - Tl ,n~f~m) ’ s

then we see that for m = 1, n = j — 1, this reduces to the formula of Youngs
and Cramer, since S = 0 for any single data point. The form (2.1b) is more stable
numerically, however.

Regardless of what method is used to compute S, the formulae (2.1) may be
useful in their own right whenever two samples must be combincd. Oune j.ossible
application is to parallel processing. If onc has two or imorc proce:zors available, the
sample can be split up into smaller subsamplcs, and the sum of ~quaics coinputed
for each subsample independently using any algorithm desired. The sum of «quares
for the original sample can then be calculated using the updating formul: .

However, even in the case of a single processor, it is very desirable to compute
S using (2.1). The mcthod (1.5) may be generalized to compute S by processing
the data in groups of ;n elements: compute the sum of squarcs for ci.cii grroup using
the two-pass algorithm and then update the global S accordinaly. Traditional
updating algorithms such as that of Youngs and Cramer have uscd m =- 1.

We have found, however, that the stability of the algorithm is increased by
taking m > 1. One can easily scc that the tolal numbcr of arithmcetic opscrations
performed on the data is minimized by taking m = V/N. We misht expeet that
this choice of m will minimize the resulting error. Although we do nov have a

1 satisfactory error analysis of this algorithm, the experimental results of table 4 do

4

[s i m

tend to confirm this prediction. Strictly speaking, with m > 1 this is no louger a
one-pass algorithm, but we sce that only m data values at a time nced to be kept
in core, and m can be as small as necessary.

3. The Pairwise Algorithm.

Table 4 shows that choosing m > 1 not only gives more accuracy than using
m = |, but can actually give significantly more accuracy than the tv.o-pass alzo-
rithm. This suggests that when computing the sum of squarcs for the subsamples
of size m, we should not use the two-pass algorithm when S is small. Rathier, we
should split the subsample into yet smallcr groups. Taking this idea to the limit
yields a pairwise algorithm analogous to the well-known pairv.isc al-orithm for
computing the sum of N numbers. Let §; ;5 stand for the sum of squares of elements
z; through z;, and let m = [N /2], the largest integer not excecding N/2. Then
the method consists of computing Sj,n by first computing Sy, and S, 1,5 and
then combining these by mcans of (2.1). Each of these latter quantitics has been
computed by a similar combination of still smaller subsamplcs.

The algorithm can be implemented as just described, but for reasons v Lick
we will explain shortly it is actually best to perform the pairwise alzorithia in
a somewhat modified manner. Consider the following example with N == 13.
Schematically, we compute from left to right in the tablcau (3.1). The intermmediate
T,y are also computed in a similar tableau for use in updating the S; ;. The final
value T n will be the sum of all the data points as computed by the puirwise
summation algorithm. In practice we can compute from top to bottom iu these
tablcaux requiring only one pass through the data and using only O(log, N') siorage
locations for intermediate results. We require one such location ifor cach column
in each tableau. The computation for the tableau (3.1) would procecd as follows:

(a) Compute Sj 7 and store in S|1}.
(b) Compute S; 4, combine with S[1] to get S) 4, and store this in S[2].
(c) Compute S; g and store in S[1].
(d) Compute S35, combine with S[1] to get S5 and then combinc this
with S[2] to get S;8, which is then stored in S[3].
(e) Compute Sp,10 and store in S[1].
(f) Compute Sy,13, combine with S[1] to get S 12, which is then stored
in S[2].
(g) Clean-up (necessary when N is not a power of 2):
Combine z;3 with 5[2] to get Sp ;3. Combine this with S[3] to get) 3.

Il\
/51,2\
n
Si 4
T _ /
S34
1:4/
: Sis
35\
Ss.8
:q,/ \
Ss5.8
17\57 / (3.1)
8
"
51,13 .
zg
599,10 '
Ilo/ \
So,12
a:“\S/ \Sg
y "
Z12
73

Alternatively, we can use a stack structure for the temporary locations as is done
in the sample FORTRAN routine given in scction 9.

. The final step (g) of our algorithin requires the combination of samples of quite
disparatc sizes. Such a calculation would be avoided if we adopted the alzorithm
as dcscribed in the first paragraph of this scction. FFor the pairwise summation

! algorithm, Tsao[4] points out that the corresponding mcthod gives a deercased
i “average error complexity” and presents an implementation based on the binary ,
E expansion of N, That strategy could be adopted in the present context as well,
g but its usefulncss here is questionable. We feel that the small increasc in accuracy

6

which might result would be more than offset by the increased work which we
would thus incur. For the updating formula (2.1b), it is desirable to have n ==
* whenever possible, since that formula then becomes simply

1
Sl,2m = Sl,m + Sm+l,2m + E(Tl,m - Tm+),2m)2-

In this respect, the tableau (3.1) gives the preferable computational scheme. In
fact, the amount of work requirced to perform the pairwisc algorithin as described
here is not significantly more than that required for the two-pass alcorithm. An
operation count shows that roughly 2N additions and 5N /2 multiplications arc
required, as opposed to 3N additions and N multiplications for the two-pass al-
gorithm. In addition, some bookkceping operations are required to manase the
pairwise algorithm.

Although we are not able to provide any error bounds proving ihe supcriority
of the pairwise algorithm, our expcrimental results have been quite satisfactory.
Some of these results are shown in table 5 of scction 8.

5. Extensions.

Often one wants to compute a weighted sum of squarcs of dcviations iroin
! the mean,
N
SMY = wilzi— 2% (5.1)

=1
The updating formulac (2.1} still hold with only a few minor modifications. Let
Wik = E:-;j w;. Then (2.1) is replaced by
- Ti,mtn=T1,m+ Tmt1,m4n
Wl,m+n = H/l'm + Wm+l,m+”

w) — S(W) + ”’l,m
ym+n i,m mn+l’",+n(W1,m + Wm-{-l,m-{' n) (52)

W 2

+1,m+

X ("LwﬁT],m_Tm-f-l,m—{-n) .
iI,m

Another quantity which is often of interest is the covariance of two samples
{z;} and {y;}. For this it is necessary to compute

N
Cin = (& —)y — ¥)-

i=}

If we let T{) = Z:-;jz.-, T = ZL,. ¥i, then the updating formula for C is

Cl,m+n = Cl,m + Cm+l,m+n + ;“(‘m—"_l’_—nj

5.3
% (_"_Tm 7@)(B_T(y) 7w) >3
m 1,m m+1,m-in m 1,m m+1,m+n |’

6. Error analysis of the two-pass algorithms.

We assume throughout our error analyses that we are dealing with a machine
with a guard digit and relative precision u. On a base § machine with a { digit
mantissa and proper unbiascd rounding, u = Jiﬁl_‘.

Roman letters with tildas over them will be used to denote quantitics ac-
tually computed numerically. The same letter without a tilda will indicate the

corresponding exact quantity.
In this section we present error analyses for both the standard two-pas. algo-

rithm (1.1) and Bjorck's modification (1.4). Let

N
S = E(x.' — 5)2,

1=l

The standard two-pass algorithm is S;. We first compute a value 7 for the
mean of {z;}. If this is computed in the standard manner we have

N
=)| .
ZF= N E lz.'(l + &), with [&| < Nu+ O(uz), 6.1)
1
=ity E :zsfi-
The computed value 31 is then given by

8

S=Ym—5+n), Inl<IN+2ut 0wy
v \2
=Y (w—a+E—5) 1+
=Y (e—atrm—aE—H+E—)0+n g,

=S+ (zi— 5)2'2;' — 1%(2 -TiEd) E(f. — (14
1
+ (ﬁ ZI.‘&) (N +3. 71.’)-
The O(u?) terms in the bounds for |n,| and |&] turn out to be unimportant in the
present error analysis and will be dropped below. Note that Y (z, — &) = 0 and
that the following incqualitics hold:
D (e — 2 < Slhilles < SN + 2

D5t < lslhllélls < N'2llallalielloo < N*/2llzw,

2 e — 2] < $Y%nlla < SYINV oo < SVANVAN - 2

So from (6.2) we obtain the bound
151 — Sl < S(N + 2)u+ 2N(N + 2)8"¥||zljzu® + N¥|z)3u(1 + (N -+ 2)u).

Recalling the definition (1.3) of , we sce that

-

5 —S
S

< (N 4+ 2)u+ 2N(N + Dru? + N2%&2u?(1 + (N + 2)u) (6.3)
~ Nu 4 N%2u? 4 2N%2,

When N >> 1, k >> |, the term N%?u? may cause problems as was seen in
table 2. Note that this term results from the term N(# Zz.-&)2 in (6.2). We will
now show that the computed value S, is a good approximation to this crror. We
have that

(Se—504+) with byl < (N +2)u+ 0(w)
(St~ + @A) +)

(- (el)

Z(a:.-—a’:)'f»‘)2 132(2)(Zx,g) N+ Z%‘)
(e (e ()

Note that S, contains a term ﬁg}:.r;&)z, so, using Bjorck's modification of the
two-pass algorithm we compute S as

Z|= Z|= Z|~ Z|-

= (5 —&)14+8), with [§|<u

- (s + Sl — & — (3 m) e — 21+
+ ,—V;—(z rt) o= (e —)
~ a2l) () (N + 3)
— K%(Zx,-&)z(:w S+ (30w))(1 +6).

Bounding these quantitics as before gives the {ollowing beund for the relative error:

S—s

| < (N 4 2)u+ (N + 2)(INk 4 2(N4- 2))u?

+ (N + 2N + N + 45 -+ (N + 2)ed + O(u)
~ Nu 4 4N%u? + 3N 25,

The modification has thus reduced the “sccond order term" by roughly a factor
of K.

7. Calculation of the mcan in double precision.

A greater accuracy can be achicved from any alcorithin for computing the
sum of squarcs by simply using higher precision arithmetic. It is important to

10

W o e, e T 7SS

note, however, that a large incrcase in accuracy can often be achicved by shilting
only some of the calculations to double precision. From the ceror analysis of the
two-pass algorithm, we see that computing the samplc mcan in double procision
would replace the bound || < Nu+ O(u?) in (6.1) by |&] < Nu? + O(u*). If
the remainder of the calculations are still computed in single precision, the crror
bound (6.3) will nonetheless be replaced by the improved bound

5—S§

3
3 < Nu -+ O(u’).

The difference which this can make in practice is evident from table 6 in scction
8, which gives the results of some numecrical experiments.

The generalized updating algorithm and the pairwisc algorithm arc also
improved by calculating the corresponding running sums in double precision.
Numerical results for these modified algorithms are given in tables 7 and 8 respec-
tively.

8. Experimcntal results

All of the results presented in this section were computed on an 1DN 370/ 108
computer at the Stanford Lincar Accelerator Center. The data used was provided
by a random number gencrator with mean 1 and a varicty of diiiereat variances
o For this choice of the mcan, k /s 1/0. In each casc the reaults have Leen
averaged over 20 runs. Single precision was uscd in most of the o ts excejt i
the cases where the mean was computed in double precision (table= G-8). Tu sin;zle
precision, u &~ 5 X 10~7. The “correcl” answer for usc in computint (he crror
was computed in quad precision. We report the number of correct digits in tuce
calculation, defined as — log,o(E) where E is the relative error.

11

T

Table 1: Number of correct digits for the textbook algorithm on N data points

chosen randomly from N(1.0, 0?).

NN
o? 64 256 1024 2048
1.0 5.4 4.3 4.1 4.1
10—} 4.2 4.7 3.0 3.0
10—2 3.2 3.2 2.0 2.0
103 2.2 2.2 1.0 1.0
10— 1.2 1.1 0.0 0.0
10—3 0.2 02 —10 —1.0
10—0 —08 —08 —20 —20
107 —18 —-19 =30 —=3.0
10—38 —28 —28 —40 —40

Table 2: Number of correct digits for the two-pass algorithm on N data points
chosen randomly from N(1.0, 0?).

N
o2 N\ 64 256 1024 2048
1.0 5.2 5.1 4.0 4.0
10—1 5.4 4.5 4.2 4.2
102 5.6 4.5 4.4 3.7
103 5.6 4.6 4.5 3.6
10— 5.2 4.8 4.4 4.0
105 5.5 5.3 3.1 3.0
108 4.5 4.4 2.1 1.9
107 3.5 3.3 1.1 0.9
108 25 23 0.1 —o0.1

o? N 64 256 1024 2048
1.0 52 5.1 4.0 4.0
10—1 5.4 4.5 4.2 4.2
102 5.6 4.5 4.4 3.7
102 5.6 4.6 4.4 3.6
104 5.2 4.8 3.9 3.7
10—5 5.2 5.0 3.9 3.8
10— 54 50 4.1 4.0
107 57 46 4.2 4.2
108 62 40 38 3.3

Table 3: Number of correct digits for Bjorck's two-pass algorithm on N data points
chosen randomly from N(1.0, 03).

Table 4: Number of correct digits for the generalized updating alzorithm on 1024

data points chosen randomly from N(1.0, 02) with various valucs of m. (Notc
that m == 1 corresponds to algorithm (1.5) while m = 1024 is just the two-pass

algorithm).

o? ¢ 1 2 4 8 16 32 64 128 256 512
1.0 40 40 43 46 49 50 50 5.1 5.0 4.2
10! 42 42 45 48 50 51 52 5.3 4.5 4.3
102 45 44 47 50 51 53 54 4.9 4.5 4.1
103 41 42 45 48 50 52 52 1.8 4.6 4.6
10—4 38 37 40 43 45 48 50 4.8 4.8 4.6
10—5 32 34 38 41 43 46 48 5.1 5.1 3.4
10—° 25 30 33 37 40 43 44 4.6 4.6 2.4
10—7 14 21 25 29 36 36 35 o 3.3 1.4
108 04 10 17 24 30 28 25 2.4 2.3 0.4

13

Table 5: Number of corrcct digits for the pairwise algorithm on N data points
chosen randomly from N(1.0, 0?%).

N
o? 64 256 1024 2048

1.0 58 58 5.6 5.6
10! 6.0 5.7 5.7 5.7
102 6.2 5.8 5.7 5.6
103 59 6.0 5.6 5.6
10— 55 58 5.9 5.8
103 4.7 5.2 5.4 5.4
10—° 4.5 4.7 48 4.9
10~7 39 4.2 4.3 4.4
108 3.2 3.7 38 3.9

Table 6: Number of correct digits for the two-pass algorithm on N data points
chosen randomly from N(1.0, 0?). In this tcst the mecans were compuled in double

precision.

o? 64 250 1024 2048

1.0 52 5.1 4.0 4.0
10! 53 45 4.2 4.2
10—2 56 4.5 4.4 3.7
10—3 5.6 4.6 4.4 3.6
10—4 52 4.8 3.9 3.7
103 5.1 5.0 39 38
10— 52 50 4.1 1.0
10—7 54 45 4.2 4.2
108 56 4.5 44 3.7

14

Table 7: Number of correct digits for the generalized updating alzorithm on 1024
data points chosen randomly from N(1.0, 02) with various valucs of m. In this
test the running sums wcre computed in double precision. (Note that m = 1
corresponds to algorithm (1.5) while m = 1024 is just the two-pass algorithm).

o? 1 2 4 8 16 32 64 128 256 512

1.0 40 40 43 46 49 50 5.1 5.1 5.0 4.2
10—} 42 42 45 48 50 51 52 5.3 4.5 4.3
10—2 44 44 47 49 52 53 54 4.9 4.5 4.4
103 44 44 47 49 52 53 53 4.8 4.6 4.6
10— 39 39 42 45 48 50 49 4.5 4.5 4.8
105 39 39 42 45 48 50 50 4.9 1.9 4.3
10— 4.1 41 43 46 49 50 5.1 5.1 4.8 4.2
10—7 42 42 45 48 50 52 5.2 5.3 1.5 4.3
108 44 44 47 50 52 53 54 4.9 4.3 4.4

Table 8: Number of correct digits for the pairwise algorithm on N data points
chosen randomly from N(1.0, 6%). In this test the running sums were computed in
double precision.

o? 64 256 1024 2048

1.0 59 58 5.7 5.7
10—} 59 5.7 5.7 5.7
10—2 6.0 5.7 5.7 5.6
103 6.0 5.7 5.6 5.5
10—+ 59 58 5.7 5.6
103 59 58 5.6 5.6
109 59 5.8 5.7 5.6
10—7 6.0 5.8 5.7 5.7
108 6.1 5.8 5.8 5.6

15

9. A FORTRAN implementation of the pairwise algorithm.

SUBROUILINE UPDATE(N,N,5UN,S,X)
INJ3GER M,N
REAL*3 53,S5UNl,X(N)

GIVEN THE SUM AND SUY OF SQUARES OF DEVIATIONS FROM THE
KEAN FOR A SAMPLF OF % PJOINTS,

SUY = sSUX Y(I)
I=1

X 2
S = SUN (Y(I) - 3UM/M)
I=1

AND GIVEN N NEW DATA POINIS X(1)e+.X(N), THIS BOUTINE PRODUCES
THES SUM AND SUM CF SOQUARES FOR THE COMBINED SAMPLE:

N
SU4 = SUM ¢ SUM X (I) ,
I=1
i 2 N 2
S = SUM (Y(I) - SUM/(MeN)) ¢ SUM (X(I) - SUM/(NeN))
I=1 I=1

IHZ SUY AND 5UM OF SQUARES FOR THE NEW POINTS ARE CALCULATED
USING THE PAIRWISE ALGOKTIHM. THE OLD SUM AND SUM OF SQUARES
iS5 THad UPDATED,

THIS JJUTINE HAS LOCALLY DIMENSICNED AFRAYS TERMS, SUMA AND
SA WHICH CURRENTLY HAVE DIMENSION 21, THIS LIMITS THE

NUMBER OF POINTS WHICH CAN BE HANDLED TUu N <= 2%*20 = 1048576,
TOo USZ WITH LAFGEF N, INCRRLASE THESE DIMENSIONS TO SOMETHING
AT LEAST AS LARGE AS LOG2(N) +1,

QA0 0000000N06ONMaOO0Oa000a0N0OCGO 06

INIiSGER TERMS (21),TOP,T
REAL®S SUMA(21) ,SA(21) ,MEAN,NSUM, N5

(9]

TERNS(1) = O
ToP = 2
N2 = N/2
IP (N .LE, 0) GC TC 70 '
S IFP (N .GT. 1) GO TC 6
NSUY = X (1)
NS = 0
GO 0 50

(@]

18

nan

aa

6 DO 20 I=1,N2
¢ COMPUTE THE SUM AND SUM OF SQUARES POR THE NEXT Td0
¢ DATA POINIS IN X. PUT THESE QUANTITIES ON TOP OF
THE STACK,
SUMA (TOP) = X (2%I-1) + X (2*I)
SA(LOP) = (X(2%I) - X(2*I-N)**2 / 2,0
TERNS (TCP) = 2
" IF (TEEXS(TOP) .NE. TERKS (TOP-1)) GO TO 20
¢ TOP TWO EFLEMENTS ON STACK CONTAIN QUANTITIES CONMPUTED
& PEOM THE SAME NUMBER OF DATA POINTS. COMBINE THEMNM:
)P = TOP-1
TERMS (TOP) = 2 * TEREKS (T)P)
SA(TCP) = SA(TIP) ¢ SA(TOP+1) ¢ (SUMA(TOP) - SUHA (TOP+ 1)) %2
X / TERMNS (TOP)
SUMA(TOP) = SUMA (TOP) + SUMA (TOP+¢1V)
50 TJ 10
23 TOP = TCP+1

0P = TOP-1
IF (2*N2 .EQ. N) GC TO 30
N IS OLD. PUT LAST PCINT ON STACK:
T0P = TCP+1
TERYS (TOP) = 1
SUNMA (TOP) = X (M)
SA(T0P)y = 0.0
30 T = TERMS(TOP)
NSJM = SUMA (TOP)
NS = SA(TOP)
IF (TOP .,LT. 3) GC TO S50
N IS NCT A PCWER OF 2, THE STACK CONTAINS MORE THAN
ONE ELEMENT. COMBINE THEM:
DG 40 J=3,TOP
I = TOP+2 - J
$S = NS ¢ SA(I) ¢ T*(TERMS (I)*NSUM/T - SUNA(I))**2 /

X (TERES(I) * (TERMS(I) +T))
NSUM = NSUM ¢+ SUMA(I)
4 I = T+TERKES({I)

50 CCNTINUE
$# COMBINE NS AND NSUM WITH S AND SUM RESPECTIVELY:
IF (® .EQ. 0) GO 70 60
NS = 5 ¢ NS ¢ M= (N*SUM/E - NSUM)*%2 / (N®(N¢+V))
NSUM = SUM ¢+ NSUM
60 S = NS
SUY = NSUNM

70 EKETURN
END

17

Acknowledgements.
We are particularly indebted to A. Bjorck for his suggestions concerning the
two-pass algorithm.

References.

[1) Chan, T.F.C., and Lewis, J.G. Computing standard deviations: accuracy.
CACM 22,9(Sept. 1979), 526-531.

[2] Chan, T.F.C., and Lewis, J.G. Rounding error analysis of algorithms for com-
puting means and standard deviations. Tech. Rep. No. 284, Dcpt. of
Mathematical Sciences, The Johns Hopkins University, Baltimore, Md., April
1978.

[3] Hanson, R.J. Stably updating mean and standard deviations of data. CACM
18,8(Aug. 1975), 458.

(4] Tsao, N. On “accurate” evaluation of extended sums, manuscript, Dept. of
Computer Science, Wayne State University.

[5) West, D.H.D. Updating mean and variance estimates: an improved mcthod.
CACM 22,9(Sept. 1979), 532-535.

[6] Youngs, E.A., and Cramer, E.M. Some results relevant to choice of sum and
sum-of-product algorithms. Technometries 13(Aug. 1975), 458.

18

